Operating Instructions

TVT-8 Tobin Video Transfer
Manual Thread Sprocketless Types B, Bp M & N

Basic Operation

Turn on the power with the switch on the right rear of the TVT. Check that the left-hand switch is in the “Peak Auto” or “Average Auto” position, the knob to the right of it is in the upper “Auto” position, and the right-hand rotary switch is in the “Normal Speed” position.

Note: see page 8 for identification of the items on the front panel.

Switch the unit to “Still” and note that there are no hairs or lint visible in the picture on the underscanned video monitor. If there are any, swing open the film gate and brush or blow out the hairs. On the 3CCD Deluxe and N versions you may have to turn the Manual Advance knob to see the picture. Switch back to “Stop” and close the film gate.

Check that the film format is correct for the model TVT-8 machine that you have:
• TVT-S8 machines are labeled “S8B/M/N” on the front badge and are for super-8 film. Super-8 film has small sprocket holes and comes on a reel with a 1/2” (12.7mm) diameter center hole.

• TVT-R8 machines are labeled “R8B/M/N” on the front badge and are for regular-8 film. Regular-8 film has larger sprocket holes and comes on a reel with a 5/16” (8mm) diameter center hole.

Additional “NTSC” and “PAL” designations on the badge show the video standard for which the model is made. NTSC is used in the USA, PAL is used in Europe.

If the film is the wrong type, change to the other model of TVT machine.

Place the full reel of film on the right-hand “Supply Reel” spindle, matching up the slots in the reel hub with the spokes in the reel spindle. If the reel is correctly prepared, the perforations (sprocket holes) in the film will be towards you, with the emulsion side (the side with the picture) facing to the right, while the film is hanging down from the right-hand side of the reel. There should be about 4 feet (1.25m) of leader before the first picture. If any of this is not the case, return the film reel to the preparation department for correction. The TVT requires film reels that are not unbalanced, or are bent and pinch the film edges.

The TVT has easy manual threading. This sprocketless design prevents the film damage that could otherwise occur if a bad splice sticks in the film gate and film sprockets continue to drag the film through. Threading is done as follows.

Note the two different threading paths according to whether the film will be run forward
as normally done, or will be run in reverse after checking the start of the film for example.

To thread for **forward**: Swing open the light source to reveal the film gate. Pull a few feet (1 meter) of leader past the film gate area and insert it into the film gate. Close the film gate. Route the film around the upper rollers, the two retarder posts, and the lower rollers as shown. Attach the beginning of the leader to the takeup reel, turning the reel clockwise a couple of turns. Turn the Manual Advance knob counter-clockwise a few turns to ensure that the film advances intermittently through the film gate. Switch to “Forward” to preview the film. It should be right way up (people’s heads and the sky at the top). The frameline (the dividing line between pictures on the film) should not be visible; if it is, adjust the “Framer” lever or knob slowly while running, until it is not seen.

To run in **reverse**, you must re-thread the film below the film gate so the two retarder posts are bypassed as shown. Switch to “Reverse” and run until the picture is all back on the supply reel and there is about 1 foot (.3m) of leader film between the supply reel and the film gate, then switch to “Stop.” Push the “Reset” button to zero the footage counter. Note that in Reverse the image will have jitter and ghosting; this is normal as the shutter is correctly synchronized only in Forward. Correct the threading path to include the two retarder posts again.

Start the video recorder. Switch the TVT to “Forward” and you will be recording the film on video.

The film should be inspected, repaired, cleaned and lubricated before it comes to you for transfer. A bad splice or multiple damaged perforations can cause the film to stick in the film gate. You can jab the film down with your finger between the two retarder posts to force the film to continue running.

At the end of the film, switch to “Stop” and stop the recorder. Record the film length count for billing purposes, if your company charges by the foot or meter. Attach the end of the film straight across to the supply reel, without going through the rollers and gate, and turn the reel a couple of turns counter-clockwise. Switch the Rewind “On” and monitor closely because the film rewinding is very fast, and when the film is fully rewound turn the Rewind switch “Off” immediately. Do not stick your finger into the reel spokes or grab the edge of a plastic reel while it is spinning, as this may cause injury. Remove the supply reel after it stops, and you are now ready to transfer the next reel.

Installation

Connect the TVT machine to a suitable video recorder. This is often a Mini-DV (digital video) or else DVD (digital video/versatile disc) recorder, or less commonly these days a VHS (video home system) machine. There are two video output jacks on the front of the machine. Both can be used at the same time if desired:

- The S-Video (“Separate”-video) Y/C output may give a cleaner video signal in many cases, as the luminance (brightness or Y) and chrominance (color or C) signals are sent
through separate wires and will not interfere with each other, and thus not cause odd artifacts to appear in the picture. This preferred connection is with the Mini-DIN 4-pin cable.

- The conventional video output is used in case the recorder lacks an S-Video input. The jack is a professional BNC type, so use the BNC cable to connect to commercial video equipment. Use the BNC to RCA phono type cable, to connect to consumer equipment.

 Plug the TVT into a source of 100 to 240 volts AC (alternating current) at 50 or 60 Hz (Hertz, or cycles per second.) For safety the third wire should be grounded (earthed.) Turning on the unit will cause the footage counter to light up, and for black video to be output.

Monitoring

A color video monitor should be used to help you best oversee the transfer operation. We recommend that the picture monitor be connected to the output of the recorder, so the tape or disc playback can be spot-checked for quality. We also suggest the use of an “Underscan Monitor” which enables the entire video signal to be seen by the operator. Such a monitor can be recognized by an Underscan-Normal switch. (In the underscan position, the active video area is bordered with black.)

This is because ordinary monitors and TV sets have varying degrees of “overscan.” The picture is larger than the picture tube, so the edges are cut off. The amount of underscan is not well standardized, may not be centered, may be out of adjustment, and may hide defects that could be seen on a different TV set. For example, the film may be out of frame so that the frameline is visible on some receivers but not others. Or, a piece of lint may be lodged on the edge of the aperture and working its way into the frame. To guarantee that the frameline or hairs will not be visible to anyone, no matter how their TV set may be adjusted, the transfer process should be watched with an underscan monitor so the entire video signal can be seen.

There can be small artifacts on the extreme edges, such as dirt specks stuck to the aperture, which will not be a problem as the customer will not see the entire video frame on his TV set.

When demonstrating the process or results to the public, the monitor should be switched back to the Normal position to prevent misunderstandings or long explanations.

If an Underscan monitor is not available, you can manage with one having Pulse Cross (Pulse Delay.) This puts the corners of the picture in the middle of the screen. It is possible to use this function to check for framing and gate hairs although it is less convenient.

Other Needs

Film will be received from the public in various states of disrepair, with bad splices, winding turned over on the reel, being mounted on the wrong type reel or the wrong way out, no leaders, etc. and a facility must be provided for making the footage ready for transfer. This requires at the minimum a pair of film rewinds, with adapters for regular-8 and super-8 reels, a supply of film leader and empty reels, a film splicer, and a way of cleaning excess dirt off the film. Ideally there will be a light box for looking through the film, and a light above the editing bench to reflect light off the film.
Refer to the first section of these instructions for a description of how the film should be wound on the reel. There should be 4 feet of leader on the start for proper threading of the TVT, and enough leader on the end to thread the film cleaning device. Torn film sprocket holes and crooked splices should be removed to prevent transfer problems.

Small rolls should be spliced together for efficient transfer. A properly made cement splice, using fresh cement, is preferred. The smoothest transit of splices occurs when you have made a beveled splice using an (unfortunately discontinued) Agfa or Bolex splicer, where the total thickness at the splice is about the same as unspliced film. (Fuji Single-8 and K-Mart Focal film was on polyester base and must be tape spliced.) When making tape splices, ensure that the sprocket holes are not covered up and the tape is on straight, on both sides of the film.

We suggest using 400 foot (122 meter) reels, and cans or 7" size white 1/4" audio tape boxes. Usually if 7 small 50' rolls of regular-8 film, or 8 small 50' rolls of super-8 film, is wound on each reel, this will enable two of the reels to fit on each 1 hour tape or disc with minimum waste and no need for time-consuming tape editing or overlaps. Mark the leader on the head (beginning) of the reel with the customer’s name or job number, and the reel number, to avoid mixups. Leader with a matte finish can be written on with pencil, while shiny leader can be marked with a Sharpie or India ink. Ensure that that the cleaning step does not remove the reel identification. Storage cans should be ventilated for slight air circulation, to prevent film deterioration from “vinegar syndrome.” Advise the customer to keep his film in a cool, dry, dark place to prevent fungus growth. You want the film to be in good condition so you can transfer it again when the next super generation of video equipment formats makes the present transfer obsolete. :-(

NOTE: Super-8 mechanisms are fussy about splices, compared to regular-8 ones. If your cement splices of super-8 cause excessive jamming in the film gate, change the direction of splicing by winding the film right to left on the bench while splicing, instead of left to right, so you are scraping the outgoing film instead of the incoming one. Having the splice accordingly lap the other way (so the sharp leading edge of the thick splice rubs against the mechanism’s pressure plate instead of hitting the bottom of the minimally undercut aperture plate opening) will give more reliable running.

After each reel is spliced and repaired, it is rewound through the film cleaner device on to the proper reel, which restores the reel to being heads out instead of tails (foot or end) out, and sent to the transfer room. **Note:** When using a liquid cleaner, view the rewinding film by reflected light to make sure it is dry again before it winds up, or else the film may dry with “shoreline” marks on it. You can wind quite fast if not using an excessive amount of fluid.

Important note on lubrication: Some film types are not lubricated in processing and will give an unsteady image and noisy running until lubricated. This includes the current Ektachrome 64T film as well as some private brand films made by other manufacturers. The cleaning fluid should have a small amount of wax dissolved in it to provide lubrication for smooth transport through the TVT or through the customer’s projector. A suggested amount is a lump of candle wax or beeswax the size of a pea ground up and dissolved in a pint (half litre) of solvent. Cleaning solvents that are widely used include methyl chloroform (*toxic fumes*), perchloroethylene (dry cleaning fluid) (*toxic fumes*), Freon TF (*ozone depleting*), or 99% isopropanol (isopropyl alcohol) (*flammable*). There are also commercially mixed film cleaners with lubricant. Cleaning must take place in a ventilated area.
Running Speeds

The TVT-8B models run at one speed and there is no Speed knob. This is 19.98 FPS (frames per second) for NTSC video models, and 16-2/3 FPS for PAL video models. This option gives smooth screen motion and the greatest degree of exposure correction for dark film.

The TVT-8M/N models have a choice of three speeds. The NTSC N version runs at 8.563, 17.126 and 25.689 FPS. The PAL M version has 8-1/3, 16-2/3 and 25 FPS. The 17.126 and 16-2/3 speeds are the closest to the original filming rate for most home movies. The N type gives some blending of film frames which is not noticeable in normal viewing.

The TVT-8B P models have Progressive Scan where the film runs at the same frame rate as the video. The speed is 29.97 FPS for NTSC video and 25 FPS for PAL video. There is no Speed knob. The resulting video is not suitable for viewing directly by the public as it is speeded up from normal. The video in this case is normally processed by computer software to expand the running time and reduce the frame rate accordingly to around 18 FPS for a viewable final product.

The TVT-8B 3CCD Deluxe versions give true 18 FPS and 24 FPS running speeds so no apologies or computer corrections are called for in the transfer. The film frames are blended together, which is not noticeable in regular viewing but can be seen in a still picture if the video is frozen. An additional 9 FPS speed is provided as a threading check but it is not viewable or recordable. Besides changing the Speed dial, when switching between the 18 (normal) and 24 (pro) speeds you must also make a Menu change in order to tune out the flicker.

NOTE: This applies only to the 3CCD Deluxe Versions:
1. Ensure that there is a video monitor connected, so you can see the camera menu.
2. Remove the Optical System Cover with 4 Phillips head screws.
3. Push the Menu button on the back of the camera. Note that the camera is mounted upside down as required to get the correct image orientation. Owing to this position, the actual locations of the buttons are given in parentheses ().
4. Push the Down button (above) until the cursor is next to Sub Menu 1. Push the Right (on the left) button.
5. In Sub Menu 1, push the Down button (above) to get below the Variable option to its number setting.
6. Push the Right or Left button until the shown value agrees with the following.

<table>
<thead>
<tr>
<th>Speed</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC 18 FPS</td>
<td>1 / 71.98</td>
</tr>
<tr>
<td>NTSC 24 FPS</td>
<td>1 / 96.19</td>
</tr>
<tr>
<td>PAL 18 FPS</td>
<td>1 / 72.15</td>
</tr>
<tr>
<td>PAL 24 FPS</td>
<td>1 / 96.11</td>
</tr>
</tbody>
</table>

7. Push the Menu button to exit the Menu.
8. Replace the Optical System Cover.

NOTE: Do not disturb any other camera settings or the TVT may not work correctly, or at all.
Exposure Correction

The correction uses your choice of Peak or Center-Weighted Averaging sensing, for optimum results from a variety of original moderate over- and under-exposure conditions. This is selected with the Peak - Manual - Average switch to the left of the rotary Auto - Manual knob. Peak sensing is recommended for reasonably well-composed film, maintaining the mood of the film. Average sensing is used for film that is strongly backlit (shooting into the sun) or that is dark and also has a light source (movie light or bright window) near the edge of the screen, or that is very badly overexposed. A minimum brightness level can still be set with the Manual knob, to prevent over-reacting to flashbulbs going off and the like.

For critical transfer for fussy customers who are willing to pay extra, the brightness can also be set fully manually. This latter option usually means that the video must be edited later, to remove the overlap and startup jitter when previewing, starting and stopping the TVT for each brightness correction.

Other Information

The TVT has a “Mechanism Hours” timer to measure how long the main drive motor and the mechanism have been running. This only advances in the Forward and Reverse modes. The count is remembered without need for batteries when the unit is turned off. A time interval for servicing the drive motor and mechanism has not yet been established.

Routine service:
After long use, the Claw Pivot may need greasing. Instructions for this will be furnished on request.
Service adjustments:
• After long use, the white balance of the LED and 1CCD camera module could change. To reset the white balance, turn to “Still” and “Auto” without film but with an 0.7ND neutral filter in the light path that has a small amount of blue and cyan color, and observe the output signal with an oscilloscope or waveform monitor. Adjust the R and B (red and blue) pots in the camera module, for minimum chroma carrier, preferably from the S-video “C” output. Be very careful with the tiny pots as they are easily damaged or torn loose from the circuit board.
• Automatic exposure setting should be quite stable. Current optimum factory setting is .90 volts p-p with no film in the gate. Average film will then reach about 100 IRE while “all white” overexposed film will peak around 85 IRE. The “Average” setting is for .65 volts with no film. Voltage readings are peak to peak, and will be double if measuring an unterminated output.
• In case of replacing the timing belt in B and M models, it will be necessary to reset the “Shutter Phase” selection jumpers. While running film Forward, try changing the jumper positions one at a time in sequence. Pick the phase number that gives the best safety margin against the jitter and ghosting of other positions. The bottom set of jumper pins is for the lowest speed, the middle is for the normal speed, and the top set is for the highest speed.
• Focus, centering, magnification and all camera module settings are factory set and locked in place, and should not be disturbed. 1CCD camera setup switch settings are normally: 1 on, 2 on, 3 on only in B B, and M models, 4 on only in M models, 5 off, 6 off, 7 off, 8 off for NTSC units. Switch 1 when Off turns on the AWB (Automatic White Balance) which may help off-color film somewhat, but it should be left off for running film with good color to prevent odd color effects. Switch 8 controls negative or positive output, which could be considered an
operator setting for special effects or for experiments with negative film, however owing to the
delicate and static-sensitive nature of the camera module this is best left alone. Changing other
settings will cause malfunction or less than optimum results.
• In case of odd symptoms, first check the output voltage of the switching power supply
modules. These should be 12 and 24 volts DC, ±5%. The voltage should change little no matter
what settings are made to the operating controls. The 24 volt supply may sag momentarily
while the drive motor starts running.
• If dust accumulates on the optics it should be removed with a clean camel’s hair brush or air
blower. Fingerprints must be removed immediately with lens cleaner and lens tissue, following
the instructions included with them. There should be no need to open the light source module.

Suggested Sources of Supplies

http://www.urbanskifilm.com
Takeup Reel
Exposure Auto/Manual Knob and Switch
Function Switch
Film Counter
Speed Switch
Supply Reel
Mechanism Hours Counter (Behind Reel)
1 Upper Rollers
Light Source Assembly Swings Open for Threading
2 Retarder Posts
Rewind Switch
Format Badge & Serial No.
Framer Lever
Film Gate
Optical System Cover & Light Source Receptacle

On rear cover (not shown): Power Inlet Jack, Power Switch

http://www.urbanskifilm.com
Revised First Roller on TVT-8 Machines

For additional film compliance above the film gate, the TVT-8 B, Bp, M and N machines have an improved first roller. As shown, it is on a swinging arm over to the right of the original location.

Thread in the normal way, but expecting the first roller to be farther right than shown in the instructions.

Roller on Swinging Arm

Running From Small Reels

The recommended reels are light weight plastic 400 foot size, with a large 2.4 inch center hub diameter.

If running from smaller reels, heavier reels, or reels with an old style small center hub where the film winds up, this can cause intermittent severe jitter in the film. To cure this, do the following expedient cure:

Place the supplied Nylon washer on the Supply reel spindle before installing the reel. This will reduce the pull on the film by not having to turn the Supply reel motor.

The washer must be removed before Reverse running or Rewind.

Tobin Cinema Systems, Inc.